Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
3.
Inform Med Unlocked ; 23: 100541, 2021.
Article in English | MEDLINE | ID: covidwho-1101301

ABSTRACT

BACKGROUND: Different approaches have been proved effective for combating the COVID-19 pandemic. Accordingly, in silico drug repurposing strategy, has been highly regarded as an accurate computational tool to achieve fast and reliable results. Considering SARS-CoV-2's structural proteins and their interaction the host's cell-specific receptors, this study investigated a drug repurposing strategy aiming to screen compatible inhibitors of FDA-approved drugs against viral entry receptors (ACE2 and CD147) and integral enzyme of the viral polymerase (RdRp). METHODS: The study screened the FDA-approved drugs against ACE2, CD147, and RDRP by virtual screening and molecular dynamics (MD) simulation. RESULTS: The results of this study indicated that five drugs with ACE2, four drugs with RDRP, and seven drugs with CD147 achieved the most favorable free binding energy (ΔG < -10). This study selected these drugs for MD simulation investigation whose results demonstrated that ledipasvir with ACE2, estradiol benzoate with CD147, and vancomycin with RDRP represented the most favorable ΔG. Also, paritaprevir and vancomycin have good binding energy with both targets (ACE2 and RdRp). CONCLUSIONS: Ledipasvir, estradiol benzoate, and vancomycin and paritaprevir are potentially suitable candidates for further investigation as possible treatments of COVID-19 and novel drug development.

4.
J Diabetes Metab Disord ; 19(2): 691-699, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-437206

ABSTRACT

PURPOSE: Recently, the world has been dealing with a new type of coronavirus called COVID-19 that in terms of symptoms is similar to the SARS coronavirus. Unfortunately, researchers could not find a registered therapy to treat the infection related to the virus yet. Regarding the fact that drug repurposing is a good strategy for epidemic viral infection, we applied the drug repurposing strategy using virtual screening to identify therapeutic options for COVID-19. For this purpose, five proteins of COVID-19 (3-chymotrypsin-like protease (3CLpro), Papain-Like protease (PLpro), cleavage site, HR1 and RBD in Spike protein) were selected as target proteins for drug repositioning. METHODS: First, five proteins of COVID-19 were built by homology modeling. Then FDA-approved drugs (2471 drugs) were screened against cleavage site and RBD in Spike protein via virtual screening. One hundred and twenty-eight FDA-approved drugs with the most favorable free-binding energy were attached to the cleavage site and RBD in Spike protein. Of these 128 drugs, 18 drugs have either been used currently as antiviral or have been reported to possess antiviral effects. Virtual screening was then performed for the 18 selected drugs with ACE2, 3CLpro and PLpro and HR1 and TMPRSS2. RESULTS: According to the results, glecaprevir, paritaprevir, simeprevir, ledipasvir, glycyrrhizic acid, TMC-310911, and hesperidin showed highly favorably free binding energies with all tested target proteins. CONCLUSION: The above-mentioned drugs can be regarded as candidates to treat COVID-19 infections, but further study on the efficiency of these drugs is also necessary.

SELECTION OF CITATIONS
SEARCH DETAIL